Search results
Results From The WOW.Com Content Network
A calibrated pressure-relief valve is usually incorporated in the radiator's fill cap. This pressure varies between models, but typically ranges from 4 to 30 psi (30 to 200 kPa). [4] As the coolant system pressure increases with a rise in temperature, it will reach the point where the pressure relief valve allows excess pressure to escape.
Too much oil pressure can create unnecessary work for the engine and even add air into the system. To ensure that the oil pressure does not exceed the rated maximum, once pressure exceeds a preset limit a spring-loaded pressure relief valve dumps excess pressure either to the suction side of the pump, or directly back to the oil pan or tank.
Less water supply pressure is required with this looped main configuration as the hydraulic pressure drop is lower through the main as water can flow in two directions to any sprinkler. The branch lines may terminate in a dead end or may connect at each end to different (usually opposite) points on the looped main.
Engine oil seeps down under gravity into the cylinder through various means (through the rings, valve guides, etc.) and can fill a cylinder with enough oil to hydrolock it. The seepage effect can be observed by the blue-white smoke commonly seen when a radial engine starts up.
In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics network, containing several or many interconnected branches. The aim is to determine the flow rates and pressure drops in the individual sections of the network. This is a common problem in hydraulic design.
[7] [8] [9] Because of inertial effects, the fluid will prefer to the straight direction. Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4.
The viscosity of oil can be ten times greater than water, increasing the energy required to pump oil for cooling, and reducing the net power output of the engine. Comparing air and water, air has vastly lower heat capacity per gram and per volume (4000) and less than a tenth the conductivity, but also much lower viscosity (about 200 times lower ...
The oil collects in sump (1), is withdrawn continuously by scavenge pump (2) and travels to the oil tank (3), where gases entrained in the oil separate and the oil cools. Gases (6) are returned to the engine sump. Pressure pump (4) forces the de-gassed and cooled oil (5) back to the engine's lubrication points (7).