When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of small abelian groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p. The other is the quaternion group for p = 2 and a group of exponent p for p > 2.

  3. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    An abelian group is a set, together with an operation ・ , that combines any two elements and of to form another element of , denoted .The symbol ・ is a general placeholder for a concretely given operation.

  4. Elementary abelian group - Wikipedia

    en.wikipedia.org/wiki/Elementary_abelian_group

    Here, Z/pZ denotes the cyclic group of order p (or equivalently the integers mod p), and the superscript notation means the n-fold direct product of groups. [2] In general, a (possibly infinite) elementary abelian p-group is a direct sum of cyclic groups of order p. [4] (Note that in the finite case the direct product and direct sum coincide ...

  5. Cayley table - Wikipedia

    en.wikipedia.org/wiki/Cayley_table

    The Cayley table tells us whether a group is abelian. Because the group operation of an abelian group is commutative, a group is abelian if and only if its Cayley table's values are symmetric along its diagonal axis. The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and ...

  6. Schur multiplier - Wikipedia

    en.wikipedia.org/wiki/Schur_multiplier

    The Schur multiplier of the elementary abelian group of order 16 is an elementary abelian group of order 64, showing that the multiplier can be strictly larger than the group itself. The Schur multiplier of the quaternion group is trivial, but the Schur multiplier of dihedral 2-groups has order 2.

  7. Torsion subgroup - Wikipedia

    en.wikipedia.org/wiki/Torsion_subgroup

    An abelian group A is torsion-free if and only if it is flat as a Z-module, which means that whenever C is a subgroup of some abelian group B, then the natural map from the tensor product C ⊗ A to B ⊗ A is injective. Tensoring an abelian group A with Q (or any divisible group) kills torsion. That is, if T is a torsion group then T ⊗ Q = 0.

  8. Elementary group - Wikipedia

    en.wikipedia.org/wiki/Elementary_group

    In algebra, more specifically group theory, a p-elementary group is a direct product of a finite cyclic group of order relatively prime to p and a p-group. A finite group is an elementary group if it is p-elementary for some prime number p. An elementary group is nilpotent.

  9. Category of abelian groups - Wikipedia

    en.wikipedia.org/wiki/Category_of_abelian_groups

    The zero object of Ab is the trivial group {0} which consists only of its neutral element. The monomorphisms in Ab are the injective group homomorphisms, the epimorphisms are the surjective group homomorphisms, and the isomorphisms are the bijective group homomorphisms. Ab is a full subcategory of Grp, the category of all groups.