Search results
Results From The WOW.Com Content Network
Liquid hydrogen bubbles forming in two glass flasks at the Bevatron laboratory in 1955 A large hydrogen tank in a vacuum chamber at the Glenn Research Center in Brook Park, Ohio, in 1967 A Linde AG tank for liquid hydrogen at the Museum Autovision in Altlußheim, Germany, in 2008 Two U.S. Department of Transportation placards indicating the presence of hazardous materials, which are used with ...
1.80 [16] 1.26: battery, Fluoride-ion [citation needed] 1.7: 2.8: battery, Hydrogen closed cycle H fuel cell [17] 1.62: Hydrazine decomposition (as monopropellant) 1.6: 1.6: Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation ...
Hydrogen compressors are closely related to hydrogen pumps and gas compressors: both increase the pressure on a fluid and both can transport the fluid through a pipe.As gases are compressible, the compressor also reduces the volume of hydrogen gas, whereas the main result of a pump raising the pressure of a liquid is to allow the liquid hydrogen to be transported elsewhere.
A standard seer from Almora, India.. A Seer (also sihr) is a traditional unit of mass and volume used in large parts of Asia prior to the middle of the 20th century. It remains in use only in a few countries such as Afghanistan, Iran, and parts of India although in Iran it indicates a smaller unit of weight than the one used in India.
The Space Shuttle main engine's turbopumps spun at over 30,000 rpm, delivering 150 lb (68 kg) of liquid hydrogen and 896 lb (406 kg) of liquid oxygen to the engine per second. [7] The Electron Rocket's Rutherford became the first engine to use an electrically-driven pump in flight in 2018.
An airlift pump, powered by compressed air, raises fluid by entraining gas to reduce its density. 1. air supply 2. liquid supply 3. air inlet port 4. air supply line 5. air port 6. air outlet 7. fluid intake 8. riser tube 9. air liquid mixture 10. pump outlet L: liquid, usually wastewater LL: liquid level V: Vessel G: Gravel or solids.
At an electricity cost of $0.06/kWh, as set out in the Department of Energy hydrogen production targets for 2015, [73] the hydrogen cost is $3/kg. The US DOE target price for hydrogen in 2020 is $2.30/kg, requiring an electricity cost of $0.037/kWh, which is achievable given recent PPA tenders for wind and solar in many regions. [74]
The amount of mass that can be lifted by hydrogen in air per unit volume at sea level, equal to the density difference between hydrogen and air, is: (1.292 - 0.090) kg/m 3 = 1.202 kg/m 3. and the buoyant force for one m 3 of hydrogen in air at sea level is: 1 m 3 × 1.202 kg/m 3 × 9.8 N/kg= 11.8 N