Search results
Results From The WOW.Com Content Network
In ambiguous images, detecting edges still seems natural to the person perceiving the image. However, the brain undergoes deeper processing to resolve the ambiguity. For example, consider an image that involves an opposite change in magnitude of luminance between the object and the background (e.g.
In logic a counterexample disproves the generalization, and does so rigorously in the fields of mathematics and philosophy. [1] For example, the fact that "student John Smith is not lazy" is a counterexample to the generalization "students are lazy", and both a counterexample to, and disproof of, the universal quantification "all students are ...
In mathematics, for a function :, the image of an input value is the single output value produced by when passed . The preimage of an output value y {\displaystyle y} is the set of input values that produce y {\displaystyle y} .
Let C be a category.In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms.In that case, if f : X → Y is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y.
In category theory, a branch of abstract mathematics, an equivalence of categories is a relation between two categories that establishes that these categories are "essentially the same". There are numerous examples of categorical equivalences from many areas of mathematics.
For example, all objects are cofibrant in the standard model category of simplicial sets and all objects are fibrant for the standard model category structure given above for topological spaces. Left homotopy is defined with respect to cylinder objects and right homotopy is defined with respect to path space objects .
For example, if some property P(x,y) of real numbers is known to be symmetric in x and y, namely that P(x,y) is equivalent to P(y,x), then in proving that P(x,y) holds for every x and y, one may assume "without loss of generality" that x ≤ y.
In category theory, a branch of mathematics, the opposite category or dual category C op of a given category C is formed by reversing the morphisms, i.e. interchanging the source and target of each morphism. Doing the reversal twice yields the original category, so the opposite of an opposite category is the original category itself.