Search results
Results From The WOW.Com Content Network
A model with exactly one explanatory variable is a simple linear regression; a model with two or more explanatory variables is a multiple linear regression. [1] This term is distinct from multivariate linear regression , which predicts multiple correlated dependent variables rather than a single dependent variable.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A covering LP is a linear program of the form: Minimize: b T y, subject to: A T y ≥ c, y ≥ 0, such that the matrix A and the vectors b and c are non-negative. The dual of a covering LP is a packing LP, a linear program of the form: Maximize: c T x, subject to: Ax ≤ b, x ≥ 0, such that the matrix A and the vectors b and c are non-negative.
Formally, the partial correlation between X and Y given a set of n controlling variables Z = {Z 1, Z 2, ..., Z n}, written ρ XY·Z, is the correlation between the residuals e X and e Y resulting from the linear regression of X with Z and of Y with Z, respectively.
To calculate r pb, assume that the dichotomous variable Y has the two values 0 and 1. If we divide the data set into two groups, group 1 which received the value "1" on Y and group 2 which received the value "0" on Y, then the point-biserial correlation coefficient is calculated as follows:
This term is misleading because a single efficient point can be already obtained by solving one linear program, such as the linear program with the same feasible set and the objective function being the sum of the objectives of MOLP. [4] More recent references consider outcome set based solution concepts [5] and corresponding algorithms.
Successive Linear Programming (SLP), also known as Sequential Linear Programming, is an optimization technique for approximately solving nonlinear optimization problems. [1] It is related to, but distinct from, quasi-Newton methods .