Search results
Results From The WOW.Com Content Network
Next, the user is prompted for a key to search for in the map. Using the iterator created earlier, the find() function searches for an element with the given key. If it finds the key, the program prints the element's value. If it doesn't find it, an iterator to the end of the map is returned and it outputs that the key could not be found.
In some cases a multiset in this counting sense may be generalized to allow negative values, as in Python. C++'s Standard Template Library implements both sorted and unsorted multisets. It provides the multiset class for the sorted multiset, as a kind of associative container, which implements this multiset using a self-balancing binary search ...
A related example is the multiset of solutions of an algebraic equation. A quadratic equation, for example, has two solutions. However, in some cases they are both the same number. Thus the multiset of solutions of the equation could be {3, 5}, or it could be {4, 4}. In the latter case it has a solution of multiplicity 2.
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes.
Array, a sequence of elements of the same type stored contiguously in memory; Record (also called a structure or struct), a collection of fields . Product type (also called a tuple), a record in which the fields are not named
A binary block code consists of a set of codewords, each of which is a string of 0s and 1s, all the same length. When each pair of codewords has large Hamming distance, it can be used as an error-correcting code. A block code can also be described as a family of sets, by describing each codeword as the set of positions at which it contains a 1.
In combinatorics, the twelvefold way is a systematic classification of 12 related enumerative problems concerning two finite sets, which include the classical problems of counting permutations, combinations, multisets, and partitions either of a set or of a number.
The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n.In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete.