When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coplanarity - Wikipedia

    en.wikipedia.org/wiki/Coplanarity

    Coplanarity. In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. However, a set of four or more distinct points will, in general, not lie in a single plane.

  3. Cross-ratio - Wikipedia

    en.wikipedia.org/wiki/Cross-ratio

    While the projective linear group of the projective line is 3-transitive (any three distinct points can be mapped to any other three points), and indeed simply 3-transitive (there is a unique projective map taking any triple to another triple), with the cross ratio thus being the unique projective invariant of a set of four points, there are ...

  4. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  5. Skew lines - Wikipedia

    en.wikipedia.org/wiki/Skew_lines

    Skew lines. Rectangular parallelepiped. The line through segment AD and the line through segment B 1 B are skew lines because they are not in the same plane. In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of ...

  6. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Two distinct points always determine a (straight) line. Three distinct points are either collinear or determine a unique plane. On the other hand, four distinct points can either be collinear, coplanar, or determine the entire space. Two distinct lines can either intersect, be parallel or be skew.

  7. Geometric median - Wikipedia

    en.wikipedia.org/wiki/Geometric_median

    For 3 (non-collinear) points, if any angle of the triangle formed by those points is 120° or more, then the geometric median is the point at the vertex of that angle. If all the angles are less than 120°, the geometric median is the point inside the triangle which subtends an angle of 120° to each three pairs of triangle vertices. [ 10 ]

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    In geometry, collinearity of a set of points is the property of their lying on a single line. [1] A set of points with this property is said to be collinear (sometimes spelled as colinear[2]). In greater generality, the term has been used for aligned objects, that is, things being "in a line" or "in a row".