Search results
Results From The WOW.Com Content Network
u+00be ¾ vulgar fraction three quarters The "one-half" symbol has its own code point as a precomposed character in the Number Forms block of Unicode , rendering as ½ . The reduced size of this symbol may make it illegible to readers with relatively mild visual impairment ; consequently the decomposed forms 1 ⁄ 2 or 1 / 2 may be more ...
For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.
For example, the ratio 4:5 can be written as 1:1.25 (dividing both sides by 4) Alternatively, it can be written as 0.8:1 (dividing both sides by 5). Where the context makes the meaning clear, a ratio in this form is sometimes written without the 1 and the ratio symbol (:), though, mathematically, this makes it a factor or multiplier .
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
By consequence, we may get, for example, three different values for the fractional part of just one x: let it be −1.3, its fractional part will be 0.7 according to the first definition, 0.3 according to the second definition, and −0.3 according to the third definition, whose result can also be obtained in a straightforward way by
For example, 123.456 represents 123456 / 1000 , or, in words, one hundred, two tens, three ones, four tenths, five hundredths, and six thousandths. A real number can be expressed by a finite number of decimal digits only if it is rational and its fractional part has a denominator whose prime factors are 2 or 5 or both, because these are ...
Any real number can be written in the form m × 10 ^ n in many ways: for example, 350 can be written as 3.5 × 10 2 or 35 × 10 1 or 350 × 10 0. In normalized scientific notation (called "standard form" in the United Kingdom), the exponent n is chosen so that the absolute value of m remains at least one but less than ten ( 1 ≤ | m | < 10 ).
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.