Search results
Results From The WOW.Com Content Network
The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then x {\displaystyle x} is a local minimum, and if it is negative, then x {\displaystyle x} is a local maximum; if it is zero, then the test is inconclusive.
In mathematics, a linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form + ′ + ″ + () = where a 0 (x), ..., a n (x) and b(x) are arbitrary differentiable functions that do not need to be linear, and y′, ..., y (n) are the successive derivatives of an unknown function y of ...
The (unproved) Jacobian conjecture is related to global invertibility in the case of a polynomial function, that is a function defined by n polynomials in n variables. It asserts that, if the Jacobian determinant is a non-zero constant (or, equivalently, that it does not have any complex zero), then the function is invertible and its inverse is ...
In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef WroĊski, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.
When given the values for and (), and the derivative of is a given function of and denoted as ′ = (, ()). Begin the process by setting y 0 = y ( t 0 ) {\displaystyle y_{0}=y(t_{0})} . Next, choose a value h {\displaystyle h} for the size of every step along t-axis, and set t n = t 0 + n h {\displaystyle t_{n}=t_{0}+nh} (or equivalently t n ...
In calculus, the derivative of any linear combination of functions equals the same linear combination of the derivatives of the functions; [1] this property is known as linearity of differentiation, the rule of linearity, [2] or the superposition rule for differentiation. [3]
Suppose that f is a function of two variables, x and y. If these two variables are independent, so that the domain of f is , then the behavior of f may be understood in terms of its partial derivatives in the x and y directions. However, in some situations, x and y may be dependent. For example, it might happen that f is constrained to a curve