When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Wallace–Bolyai–Gerwien theorem - Wikipedia

    en.wikipedia.org/wiki/Wallace–Bolyai–Gerwien...

    The most common version uses the concept of "equidecomposability" of polygons: two polygons are equidecomposable if they can be split into finitely many triangles that only differ by some isometry (in fact only by a combination of a translation and a rotation). In this case the Wallace–Bolyai–Gerwien theorem states that two polygons are ...

  3. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    [5] The subdivision of the polygon into triangles forms a planar graph, and Euler's formula + = gives an equation that applies to the number of vertices, edges, and faces of any planar graph. The vertices are just the grid points of the polygon; there are = + of them. The faces are the triangles of the subdivision, and the single region of the ...

  4. Polygon triangulation - Wikipedia

    en.wikipedia.org/wiki/Polygon_triangulation

    A monotone polygon can be split into two monotone chains. A polygon that is monotone with respect to the y-axis is called y-monotone. A monotone polygon with n vertices can be triangulated in O(n) time. Assuming a given polygon is y-monotone, the greedy algorithm begins by walking on one chain of the polygon from top to bottom while adding ...

  5. Triangulation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(geometry)

    Polygon triangulations may be found in linear time and form the basis of several important geometric algorithms, including a simple approximate solution to the art gallery problem. The constrained Delaunay triangulation is an adaptation of the Delaunay triangulation from point sets to polygons or, more generally, to planar straight-line graphs.

  6. Roberts's triangle theorem - Wikipedia

    en.wikipedia.org/wiki/Roberts's_triangle_theorem

    Seven lines tangent to a semicircle form five triangular faces. Roberts's triangle theorem, a result in discrete geometry, states that every simple arrangement of lines has at least triangular faces. Thus, three lines form a triangle, four lines form at least two triangles, five lines form at least three triangles, etc.

  7. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons, the cells of the arrangement, line segments and rays, the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement.

  8. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    The theorem follows by dividing these two equations. The converse follows as a corollary. [3] Let D, E, F be given on the lines BC, AC, AB so that the equation holds. Let AD, BE meet at O and let F' be the point where CO crosses AB. Then by the theorem, the equation also holds for D, E, F'. Comparing the two,

  9. Two ears theorem - Wikipedia

    en.wikipedia.org/wiki/Two_ears_theorem

    Conversely, if a polygon is triangulated, the weak dual of the triangulation (a graph with one vertex per triangle and one edge per pair of adjacent triangles) will be a tree and each leaf of the tree will form an ear. Since every tree with more than one vertex has at least two leaves, every triangulated polygon with more than one triangle has ...