Ads
related to: exercise 8.1 class 7 maths rational numbers solutions
Search results
Results From The WOW.Com Content Network
If d is a divisor of n, then the number of elements in Z/nZ which have order d is φ(d), and the number of elements whose order divides d is exactly d. If G is a finite group in which, for each n > 0 , G contains at most n elements of order dividing n , then G must be cyclic.
A rational algebraic expression (or rational expression) is an algebraic expression that can be written as a quotient of polynomials, such as x 2 + 4x + 4. An irrational algebraic expression is one that is not rational, such as √ x + 4.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics." [1] Number theorists study prime numbers as well as the properties of mathematical objects constructed from integers (for example, rational numbers), or defined as generalizations of the ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
In order to convert a rational number represented as a fraction into decimal form, one may use long division. For example, consider the rational number 5 / 74 : 0.0 675 74 ) 5.00000 4.44 560 518 420 370 500 etc. Observe that at each step we have a remainder; the successive remainders displayed above are 56, 42, 50.
The solution in radicals (without trigonometric functions) of a general cubic equation, when all three of its roots are real numbers, contains the square roots of negative numbers, a situation that cannot be rectified by factoring aided by the rational root test, if the cubic is irreducible; this is the so-called casus irreducibilis ...
The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.