When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Solving applications dealing with non-uniform circular motion involves force analysis. With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration.

  3. Analytical mechanics - Wikipedia

    en.wikipedia.org/wiki/Analytical_mechanics

    The two-body problem is solved by formulas involving parameters; their values can be changed to study the class of all solutions, that is, the mathematical structure of the problem. Moreover, an accurate mental or drawn picture can be made for the motion of two bodies, and it can be as real and accurate as the real bodies moving and interacting.

  4. Circular orbit - Wikipedia

    en.wikipedia.org/wiki/Circular_orbit

    A circular orbit is depicted in the top-left quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy remains constant throughout the constant speed circular orbit.

  5. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy -plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω .

  6. Optical rotation - Wikipedia

    en.wikipedia.org/wiki/Optical_rotation

    Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.

  7. Effective potential - Wikipedia

    en.wikipedia.org/wiki/Effective_potential

    There are many useful features of the effective potential, such as . To find the radius of a circular orbit, simply minimize the effective potential with respect to , or equivalently set the net force to zero and then solve for : = After solving for , plug this back into to find the maximum value of the effective potential .

  8. Molecular dynamics - Wikipedia

    en.wikipedia.org/wiki/Molecular_dynamics

    It is referred to simply as the potential in physics, or the force field in chemistry. The first equation comes from Newton's laws of motion ; the force F {\displaystyle F} acting on each particle in the system can be calculated as the negative gradient of U ( X ) {\displaystyle U(X)} .

  9. Clohessy–Wiltshire equations - Wikipedia

    en.wikipedia.org/wiki/Clohessy–Wiltshire_equations

    Suppose a target body is moving in a circular orbit and a chaser body is moving in an elliptical orbit. Let ,, be the relative position of the chaser relative to the target with radially outward from the target body, is along the orbit track of the target body, and is along the orbital angular momentum vector of the target body (i.e., ,, form a right-handed triad).