Search results
Results From The WOW.Com Content Network
A radial parabolic trajectory is a non-periodic trajectory on a straight line where the relative velocity of the two objects is always the escape velocity. There are two cases: the bodies move away from each other or towards each other. There is a rather simple expression for the position as function of time:
The following image illustrates a circle (grey), an ellipse (red), a parabola (green) and a hyperbola (blue) A diagram of the various forms of the Kepler Orbit and their eccentricities. Blue is a hyperbolic trajectory (e > 1). Green is a parabolic trajectory (e = 1). Red is an elliptical orbit (0 < e < 1). Grey is a circular orbit (e = 0).
A radial trajectory can be a double line segment, which is a degenerate ellipse with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1, this is not a parabolic orbit. Most properties and formulas of elliptic orbits apply. However, the orbit cannot be closed.
The velocity equation for a hyperbolic trajectory is = ... It works equally well for the circular, elliptical, parabolic, and hyperbolic cases, the differential ...
Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular orbit, elliptic orbit, parabolic trajectory, hyperbolic trajectory, or radial trajectory) with the ...
Radial parabolic orbit: An open parabolic orbit where the object is moving at the escape velocity. Radial hyperbolic orbit: An open hyperbolic orbit where the object is moving at greater than the escape velocity. This is a hyperbolic orbit with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1, this is not a parabolic orbit.
Keeping the energy constant and reducing the angular momentum, elliptic, parabolic, and hyperbolic orbits each tend to the corresponding type of radial trajectory while e tends to 1 (or in the parabolic case, remains 1). For a repulsive force only the hyperbolic trajectory, including the radial version, is applicable.
Orbital trajectories are either circles or ellipses; the parabolic trajectory represents first escape of the vehicle from the central body's gravitational field. Hyperbolic trajectories are escape trajectories with excess velocity, and will be covered under Interplanetary flight below. Elliptical orbits are characterized by three elements. [9]