When.com Web Search

  1. Ad

    related to: general addition rule of probability

Search results

  1. Results From The WOW.Com Content Network
  2. Probability axioms - Wikipedia

    en.wikipedia.org/wiki/Probability_axioms

    This is called the addition law of probability, or the sum rule. That is, the probability that an event in A or B will happen is the sum of the probability of an event in A and the probability of an event in B, minus the probability of an event that is in both A and B. The proof of this is as follows: Firstly,

  3. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] This number is often expressed as a percentage (%), ranging from 0% to ...

  4. Sum rule - Wikipedia

    en.wikipedia.org/wiki/Sum_rule

    Sum rule may refer to: Sum rule in differentiation, Differentiation rules #Differentiation is linear; Sum rule in integration, see Integral #Properties; Addition principle, a counting principle in combinatorics; In probability theory, an implication of the additivity axiom, see Probability axioms #Further consequences; Sum rule in quantum mechanics

  5. Addition principle - Wikipedia

    en.wikipedia.org/wiki/Addition_principle

    5+0=5 illustrated with collections of dots. In combinatorics, the addition principle [1] [2] or rule of sum [3] [4] is a basic counting principle.Stated simply, it is the intuitive idea that if we have A number of ways of doing something and B number of ways of doing another thing and we can not do both at the same time, then there are + ways to choose one of the actions.

  6. Algebra of random variables - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_random_variables

    List of convolutions of probability distributions – the probability measure of the sum of independent random variables is the convolution of their probability measures. Law of total expectation; Law of total variance; Law of total covariance; Law of total cumulance; Taylor expansions for the moments of functions of random variables; Delta method

  7. Probability theory - Wikipedia

    en.wikipedia.org/wiki/Probability_theory

    That is, the probability function f(x) lies between zero and one for every value of x in the sample space Ω, and the sum of f(x) over all values x in the sample space Ω is equal to 1. An event is defined as any subset of the sample space . The probability of the event is defined as

  8. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  9. Law of total probability - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_probability

    The term law of total probability is sometimes taken to mean the law of alternatives, which is a special case of the law of total probability applying to discrete random variables. [ citation needed ] One author uses the terminology of the "Rule of Average Conditional Probabilities", [ 4 ] while another refers to it as the "continuous law of ...