When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integer partition - Wikipedia

    en.wikipedia.org/wiki/Integer_partition

    This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n). [8] [9] This result was proved by Leonhard Euler in 1748 [10] and later was generalized as Glaisher's theorem.

  3. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  4. Triangle of partition numbers - Wikipedia

    en.wikipedia.org/wiki/Triangle_of_partition_numbers

    In the number theory of integer partitions, the numbers () denote both the number of partitions of into exactly parts (that is, sums of positive integers that add to ), and the number of partitions of into parts of maximum size exactly .

  5. Partition of a set - Wikipedia

    en.wikipedia.org/wiki/Partition_of_a_set

    The total number of partitions of an n-element set is the Bell number B n. The first several Bell numbers are B 0 = 1, B 1 = 1, B 2 = 2, B 3 = 5, B 4 = 15, B 5 = 52, and B 6 = 203 (sequence A000110 in the OEIS ).

  6. Glaisher's theorem - Wikipedia

    en.wikipedia.org/wiki/Glaisher's_theorem

    In number theory, Glaisher's theorem is an identity useful to the study of integer partitions.Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times.

  7. Bell triangle - Wikipedia

    en.wikipedia.org/wiki/Bell_triangle

    The nth number in this sequence also counts the number of partitions of n elements into subsets, where one of the subsets is distinguished from the others; for instance, there are 10 ways of partitioning three items into subsets and then choosing one of the subsets. [6]

  8. Bell number - Wikipedia

    en.wikipedia.org/wiki/Bell_number

    The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...

  9. List of partition topics - Wikipedia

    en.wikipedia.org/wiki/List_of_partition_topics

    Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and