When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. HyperLogLog - Wikipedia

    en.wikipedia.org/wiki/HyperLogLog

    HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets.

  3. Flajolet–Martin algorithm - Wikipedia

    en.wikipedia.org/wiki/Flajolet–Martin_algorithm

    A common solution is to combine both the mean and the median: Create hash functions and split them into distinct groups (each of size ). Within each group use the mean for aggregating together the l {\displaystyle l} results, and finally take the median of the k {\displaystyle k} group estimates as the final estimate.

  4. Count-distinct problem - Wikipedia

    en.wikipedia.org/wiki/Count-distinct_problem

    To handle the bounded storage constraint, streaming algorithms use a randomization to produce a non-exact estimation of the distinct number of elements, . State-of-the-art estimators hash every element into a low-dimensional data sketch using a hash function, (). The different techniques can be classified according to the data sketches they store.

  5. Hash function - Wikipedia

    en.wikipedia.org/wiki/Hash_function

    A universal hashing scheme is a randomized algorithm that selects a hash function h among a family of such functions, in such a way that the probability of a collision of any two distinct keys is 1/m, where m is the number of distinct hash values desired—independently of the two keys. Universal hashing ensures (in a probabilistic sense) that ...

  6. Counting sort - Wikipedia

    en.wikipedia.org/wiki/Counting_sort

    Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...

  7. Universal hashing - Wikipedia

    en.wikipedia.org/wiki/Universal_hashing

    The expected number of keys in bins with at least keys in them is bounded above by / ((/) +). [7] Thus, if the capacity of each bin is capped to three times the average size ( t = 3 n / m {\displaystyle t=3n/m} ), the total number of keys in overflowing bins is at most O ( m ) {\displaystyle O(m)} .

  8. Hash table - Wikipedia

    en.wikipedia.org/wiki/Hash_table

    An associative array stores a set of (key, value) pairs and allows insertion, deletion, and lookup (search), with the constraint of unique keys. In the hash table implementation of associative arrays, an array A {\displaystyle A} of length m {\displaystyle m} is partially filled with n {\displaystyle n} elements, where m ≥ n {\displaystyle m ...

  9. Linear probing - Wikipedia

    en.wikipedia.org/wiki/Linear_probing

    A hash function is used to map each key into the cell of T where that key should be stored, typically scrambling the keys so that keys with similar values are not placed near each other in the table. A hash collision occurs when the hash function maps a key into a cell that is already occupied by a different key. Linear probing is a strategy ...