Search results
Results From The WOW.Com Content Network
For fixed points A and B, the set of points M in the plane for which the angle ∠AMB is equal to α is an arc of a circle. The measure of ∠AOB, where O is the center of the circle, is 2α. The inscribed angle theorem states that an angle θ inscribed in a circle is half of the central angle 2θ that intercepts the same arc on the circle.
The angle θ is taken in the positive sense and must lie in the interval 0 < θ ≤ π (radian measure). The chord function can be related to the modern sine function, by taking one of the points to be (1,0), and the other point to be (cos θ, sin θ), and then using the Pythagorean theorem to calculate the chord length: [2]
By extension, an angle subtended by a more complex geometric figure may be defined in terms of the figure's convex hull and its diameter; for example, the angle subtended by a tree as viewed in a camera (see angular size). [1] A subtended plane angle can also be defined for any two arbitrary isolated points and a vertex, as in two lines of ...
For example, where the length of a chord subtended by a 112° arc is reported to be 99,29,5, it has a length of + + = ¯, rounded to the nearest 1 / 60 2 . [1] After the columns for the arc and the chord, a third column is labeled "sixtieths".
A circular sector is shaded in green. Its curved boundary of length L is a circular arc. A circular arc is the arc of a circle between a pair of distinct points.If the two points are not directly opposite each other, one of these arcs, the minor arc, subtends an angle at the center of the circle that is less than π radians (180 degrees); and the other arc, the major arc, subtends an angle ...
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side of the chord (tangent chord angle). If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle.
[1] [3] The half-chords were called ardha-jyās or jyā-ardhas. These terms were again shortened to jyā by omitting the qualifier ardha which meant "half of". The Sanskrit word koṭi has the meaning of "point, cusp", and specifically "the curved end of a bow". In trigonometry, it came to denote "the complement of an arc to 90°".