Search results
Results From The WOW.Com Content Network
The pore space of soil contains the liquid and gas phases of soil, i.e., everything but the solid phase that contains mainly minerals of varying sizes as well as organic compounds. In order to understand porosity better a series of equations have been used to express the quantitative interactions between the three phases of soil.
Porosity of subsurface soil is lower than in surface soil due to compaction by gravity. Porosity of 0.20 is considered normal for unsorted gravel size material at depths below the biomantle. Porosity in finer material below the aggregating influence of pedogenesis can be expected to approximate this value. Soil porosity is complex.
Soil bulk density, when determined at standardized moisture conditions, is an estimate of soil compaction. [3] Soil porosity consists of the void part of the soil volume and is occupied by gases or water. Soil consistency is the ability of soil materials to stick together. Soil temperature and colour are self-defining.
The table below displays the deal bulk densities that both allow and restrict root growth for the three main texture classifications. The porosity of a soil is an important factor that determines the amount of water a soil can hold, how much air it can hold, and subsequently how well plant roots can grow within the soil. [14] Soil porosity is ...
This static poroelasticity theory is a generalization of the one-dimensional consolidation theory in soil mechanics. This theory was developed from Biot's work in 1941. [ 2 ] The dynamic poroelasticity is proposed for understanding the wave propagation in both the liquid and solid phases of saturated porous materials.
This article about materials science is a stub. You can help Wikipedia by expanding it.
Pores (the spaces that exist between soil particles) provide for the passage and/or retention of gasses and moisture within the soil profile.The soil's ability to retain water is strongly related to particle size; water molecules hold more tightly to the fine particles of a clay soil than to coarser particles of a sandy soil, so clays generally retain more water. [2]
Soil macropores are easily affected by soil compaction. [14] Compacted soils, for example in forest landings, usually have a low macropore proportion (macro-porosity) with impeded water movement. Organic matter can be incorporated into disturbed soils to improve their macro-porosity and related soil functions [15]