When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decagon - Wikipedia

    en.wikipedia.org/wiki/Decagon

    In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular decagon, m=5, and it can be divided into 10 rhombs, with examples shown below. This decomposition can be seen as 10 of 80 faces in a Petrie polygon projection plane of the 5-cube.

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular: vertex) or corners. The word polygon comes from Late Latin polygōnum (a noun), from Greek πολύγωνον ( polygōnon/polugōnon ), noun use of neuter of πολύγωνος ( polygōnos/polugōnos , the masculine ...

  4. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    The convex forms are listed in order of degree of vertex configurations from 3 faces/vertex and up, and in increasing sides per face. This ordering allows topological similarities to be shown. There are infinitely many prisms and antiprisms, one for each regular polygon; the ones up to the 12-gonal cases are listed.

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The polytopes of rank 2 (2-polytopes) are called polygons.Regular polygons are equilateral and cyclic.A p-gonal regular polygon is represented by Schläfli symbol {p}.. Many sources only consider convex polygons, but star polygons, like the pentagram, when considered, can also be regular.

  6. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.

  7. Icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Icosidodecahedron

    In geometry, an icosidodecahedron or pentagonal gyrobirotunda is a polyhedron with twenty (icosi-) triangular faces and twelve (dodeca-) pentagonal faces. An icosidodecahedron has 30 identical vertices , with two triangles and two pentagons meeting at each, and 60 identical edges, each separating a triangle from a pentagon.

  8. Archimedean solid - Wikipedia

    en.wikipedia.org/wiki/Archimedean_solid

    4.6.10: 30 squares 20 hexagons 12 decagons 180 120 I h: Snub dodecahedron ... thirteen polyhedra and briefly described them in terms of how many faces of each kind ...

  9. Dodecagon - Wikipedia

    en.wikipedia.org/wiki/Dodecagon

    In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular dodecagon, m=6, and it can be divided into 15: 3 squares, 6 wide 30° rhombs and 6 narrow 15° rhombs. This decomposition is based on a Petrie polygon projection of a 6-cube, with 15 of 240 faces