Search results
Results From The WOW.Com Content Network
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
Elmore delay [1] is a simple approximation to the delay through an RC network in an electronic system. It is often used in applications such as logic synthesis, delay calculation, static timing analysis, placement and routing, since it is simple to compute (especially in tree structured networks, which are the vast majority of signal nets within ICs) and is reasonably accurate.
This circuit does not have a resistor like the above, but all tuned circuits have some resistance, causing them to function as an RLC circuit. An RLC circuit is an electrical circuit consisting of a resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that ...
The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
Using the extra element theorem, a circuit element (such as a resistor) can be removed from a circuit, and the desired driving point or transfer function is found. By removing the element that most complicate the circuit (such as an element that creates feedback), the desired function can be easier to obtain. Next, two correctional factors must ...
An RC circuit sets the output pulse's duration as the time in seconds it takes to charge C to 2 ⁄ 3 V CC: [16] t = ln ( 3 ) ⋅ R ⋅ C , {\displaystyle t=\ln(3)\cdot R\cdot C,} where R {\displaystyle R} is the resistance in ohms , C {\displaystyle C} is the capacitance in farads , ln ( 3 ) {\displaystyle \ln(3)} is the natural log of ...
Another common design is the "Twin-T" oscillator as it uses two "T" RC circuits operated in parallel. One circuit is an R-C-R "T" which acts as a low-pass filter. The second circuit is a C-R-C "T" which operates as a high-pass filter. Together, these circuits form a bridge which is tuned at the desired frequency of oscillation.
However, the combination of a resistor and a capacitor (an RC circuit, a common low-pass filter) has what is called kTC noise. The noise bandwidth of an RC circuit is Δ f = 1 4 R C . {\displaystyle \Delta f{=}{\tfrac {1}{4RC}}.} [ 7 ] When this is substituted into the thermal noise equation, the result has an unusually simple form as the value ...