When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    Molecular orbital diagram of dinitrogen. With nitrogen, we see the two molecular orbitals mixing and the energy repulsion. This is the reasoning for the rearrangement from a more familiar diagram. The σ from the 2p is more non-bonding due to mixing, and same with the 2s σ. This also causes a large jump in energy in the 2p σ* orbital.

  3. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The standing wave frequency is proportional to the orbital's kinetic energy. (This plot is a one-dimensional slice through the three-dimensional system.) As a simple MO example, consider the electrons in a hydrogen molecule, H 2 (see molecular orbital diagram), with the two atoms labelled H' and H". The lowest-energy atomic orbitals, 1s' and 1s ...

  4. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    The highest occupied orbital energy level of dioxygen is a pair of antibonding π* orbitals. In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state.

  5. Nitrogen - Wikipedia

    en.wikipedia.org/wiki/Nitrogen

    Nitrogen is a chemical element; it has symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System.

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Assignments can be made to these signals indicated by the transition of electrons moving from one orbital at a lower energy to a higher energy orbital. The molecular orbital diagram for the final state describes the electronic nature of the molecule in an excited state.

  7. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    Each orbital in an atom is characterized by a set of values of three quantum numbers n, ℓ, and m ℓ, which respectively correspond to electron's energy, its orbital angular momentum, and its orbital angular momentum projected along a chosen axis (magnetic quantum number). The orbitals with a well-defined magnetic quantum number are generally ...

  8. Hund's rule of maximum multiplicity - Wikipedia

    en.wikipedia.org/wiki/Hund's_Rule_of_Maximum...

    For example, the nitrogen atom ground state has three unpaired electrons of parallel spin, so that the total spin is 3/2 and the multiplicity is 4. The lower energy and increased stability of the atom arise because the high-spin state has unpaired electrons of parallel spin, which must reside in different spatial orbitals according to the Pauli ...

  9. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    The energy associated to an electron is that of its orbital. The energy of a configuration is often approximated as the sum of the energy of each electron, neglecting the electron-electron interactions. The configuration that corresponds to the lowest electronic energy is called the ground state. Any other configuration is an excited state.