Search results
Results From The WOW.Com Content Network
A DNA sequence is called a "sense" sequence if it is the same as that of a messenger RNA copy that is translated into protein. ... pairs found in other DNA molecules.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
[1] [2] In most organisms, genes are made of DNA, where the particular DNA sequence determines the function of the gene. A gene is transcribed (copied) from DNA into RNA, which can either be non-coding with a direct function, or an intermediate messenger that is then translated into protein. Each of these steps is controlled by specific ...
DNA is transcribed into mRNA molecules, which travel to the ribosome where the mRNA is used as a template for the construction of the protein strand. Since nucleic acids can bind to molecules with complementary sequences, there is a distinction between " sense " sequences which code for proteins, and the complementary "antisense" sequence ...
There are two types of molecular genes: protein-coding genes and non-coding genes. [1] [2] [3] During gene expression (the synthesis of RNA or protein from a gene), DNA is first copied into RNA. RNA can be directly functional or be the intermediate template for the synthesis of a protein.
DNA uses T instead. This mRNA molecule will instruct a ribosome to synthesize a protein according to this code. The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins.
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
The major structures in DNA compaction: DNA, the nucleosome, the 11 nm beads on a string chromatin fibre and the metaphase chromosome. Chromatin is a complex of DNA and protein found in eukaryotic cells. [1] The primary function is to package long DNA molecules into more compact, denser structures.