Search results
Results From The WOW.Com Content Network
Frobenius inner product, the dot product of matrices considered as vectors, or, equivalently the sum of the entries of the Hadamard product; Hadamard product of two matrices of the same size, resulting in a matrix of the same size, which is the product entry-by-entry; Kronecker product or tensor product, the generalization to any size of the ...
The two nonequivalent triple cross products of three vectors a, b, c. In each case, two vectors define a plane, the other is out of the plane and can be split into parallel and perpendicular components to the cross product of the vectors defining the plane. These components can be found by vector projection and rejection. The triple product is ...
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. The sum of two skew-symmetric matrices is skew-symmetric. A scalar multiple of a skew-symmetric matrix is skew-symmetric. The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero.
A is a 10×30 matrix, B is a 30×5 matrix, C is a 5×60 matrix, and the final result is a 10×60 matrix. The regular polygon for this example is a 4-gon, i.e. a square: The matrix product AB is a 10x5 matrix and BC is a 30x60 matrix. The two possible triangulations in this example are:
Let , be two square matrices over a ring, for example matrices whose entries are integers or the real numbers. The goal of matrix multiplication is to calculate the matrix product C = A B {\displaystyle C=AB} .
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.