Search results
Results From The WOW.Com Content Network
Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: J = − E d c d x , {\displaystyle J=-E{\frac {dc}{dx}},} where c is mass concentration of the species being dispersed, E is the dispersion coefficient, and x is the position in the direction of the concentration gradient.
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Tracer diffusion and Self-diffusion, which is a spontaneous mixing of molecules taking place in the absence of concentration (or chemical potential) gradient. This type of diffusion can be followed using isotopic tracers, hence the name. The tracer diffusion is usually assumed to be identical to self-diffusion (assuming no significant isotopic ...
"Diffusion" is the gradual movement/dispersion of concentration within a body with no net movement of matter. ... the difference between velocities, ...
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
Multicomponent diffusion is diffusion in mixtures, and diffusiophoresis is the special case where we are interested in the movement of one species that is usually a colloidal particle, in a gradient of a much smaller species, such as dissolved salt such as sodium chloride in water. or a miscible liquid, such as ethanol in water.