Search results
Results From The WOW.Com Content Network
Lempel–Ziv–Welch (LZW) is a universal lossless data compression algorithm created by Abraham Lempel, Jacob Ziv, and Terry Welch.It was published by Welch in 1984 as an improved implementation of the LZ78 algorithm published by Lempel and Ziv in 1978.
In the PalmDoc format, a length–distance pair is always encoded by a two-byte sequence. Of the 16 bits that make up these two bytes, 11 bits go to encoding the distance, 3 go to encoding the length, and the remaining two are used to make sure the decoder can identify the first byte as the beginning of such a two-byte sequence.
Most lossless compression programs do two things in sequence: the first step generates a statistical model for the input data, and the second step uses this model to map input data to bit sequences in such a way that "probable" (i.e. frequently encountered) data will produce shorter output than "improbable" data.
The LZ4 algorithm aims to provide a good trade-off between speed and compression ratio. Typically, it has a smaller (i.e., worse) compression ratio than the similar LZO algorithm, which in turn is worse than algorithms like DEFLATE.
Lempel–Ziv–Welch (LZW) is a lossless compression algorithm developed in 1984. It is used in the GIF format, introduced in 1987. [ 39 ] DEFLATE , a lossless compression algorithm specified in 1996, is used in the Portable Network Graphics (PNG) format.
The underlying mechanism in this complexity measure is the starting point for some algorithms for lossless data compression, like LZ77, LZ78 and LZW. Even though it is based on an elementary principle of words copying, this complexity measure is not too restrictive in the sense that it satisfies the main qualities expected by such a measure ...
The distance encoding starts with a 6-bit "distance slot", which determines how many further bits are needed. Distances are decoded as a binary concatenation of, from most to least significant, two bits depending on the distance slot, some bits encoded with fixed 0.5 probability, and some context encoded bits, according to the following table ...
In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source. [1]