When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex.

  3. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...

  4. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  5. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    The term cycle may also refer to an element of the cycle space of a graph. There are many cycle spaces, one for each coefficient field or ring. The most common is the binary cycle space (usually called simply the cycle space), which consists of the edge sets that have even degree at every vertex; it forms a vector space over the two-element field.

  6. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    circuit A circuit may refer to a closed trail or an element of the cycle space (an Eulerian spanning subgraph). The circuit rank of a graph is the dimension of its cycle space. circumference The circumference of a graph is the length of its longest simple cycle. The graph is Hamiltonian if and only if its circumference equals its order. class 1.

  7. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  8. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    The symmetric difference of two cycles is an Eulerian subgraph. In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph.

  9. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.