Search results
Results From The WOW.Com Content Network
The heat dissipation in integrated circuits problem has gained an increasing interest in recent years due to the miniaturization of semiconductor devices. The temperature increase becomes relevant for cases of relatively small-cross-sections wires, because such temperature increase may affect the normal behavior of semiconductor devices.
Rapid thermal processing (RTP) is a semiconductor manufacturing process which heats silicon wafers to temperatures exceeding 1,000°C for not more than a few seconds. During cooling wafer temperatures must be brought down slowly to prevent dislocations and wafer breakage due to thermal shock.
Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution. Note that in the strictest sense thermal velocity is not a velocity, since velocity usually describes a vector rather than simply a scalar speed.
The Monte Carlo method for electron transport is a semiclassical Monte Carlo (MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to simulate the trajectories of particles as they move across the device under the influence of an electric field using classical mechanics.
By precisely controlling the temperature gradients, rate of pulling and speed of rotation, it is possible to extract a large, single-crystal, cylindrical ingot from the melt. Occurrence of unwanted instabilities in the melt can be avoided by investigating and visualizing the temperature and velocity fields during the crystal growth process. [ 7 ]
These will be based on diamond and aluminum nitride technology, which revolutionizes semiconductor electronics by increasing power delivery and thermal management in sensors and other electronic ...
The term "hot electron" comes from the effective temperature term used when modelling carrier density (i.e., with a Fermi-Dirac function) and does not refer to the bulk temperature of the semiconductor (which can be physically cold, although the warmer it is, the higher the population of hot electrons it will contain all else being equal).
A BJT uses a single crystal of material in its circuit that is divided into two types of semiconductor, an n-type and p-type. These two types of doped semiconductors are spread over three different regions in respective order: the emitter region, the base region and the collector region. The emitter region and collector region are quantitively ...