Ads
related to: particle antiparticle annihilation test
Search results
Results From The WOW.Com Content Network
When a proton encounters its antiparticle (and more generally, if any species of baryon encounters the corresponding antibaryon), the reaction is not as simple as electron–positron annihilation. Unlike an electron, a proton is a composite particle consisting of three "valence quarks" and an indeterminate number of "sea quarks" bound by gluons.
The electron–positron annihilation process is the physical phenomenon relied on as the basis of positron emission tomography (PET) and positron annihilation spectroscopy (PAS). It is also used as a method of measuring the Fermi surface and band structure in metals by a technique called Angular Correlation of Electron Positron Annihilation ...
beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and annihilation
If a particle and antiparticle are in the appropriate quantum states, then they can annihilate each other and produce other particles. Reactions such as e − + e + → γ γ (the two-photon annihilation of an electron-positron pair) are an example. The single-photon annihilation of an electron-positron pair, e − + e + → γ
Annihilation radiation is a term used in Gamma spectroscopy for the photon radiation produced when a particle and its antiparticle collide and annihilate. Most commonly, this refers to 511-k eV photons produced by an electron interacting with a positron . [ 1 ]
Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifically to a photon creating an electron–positron pair near a nucleus.
Yoichiro Nambu later applied it to all production and annihilation of particle-antiparticle pairs, stating that "the eventual creation and annihilation of pairs that may occur now and then, is no creation nor annihilation, but only a change of directions of moving particles, from past to future, or from future to past." [4]
A collision between any particle and its anti-particle partner leads to their mutual annihilation, giving rise to various proportions of intense photons , neutrinos, and sometimes less-massive particle–antiparticle pairs. The majority of the total energy of annihilation emerges in the form of ionizing radiation. If surrounding matter is ...