When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probabilistic neural network - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_neural_network

    A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems. In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.

  3. Probabilistic soft logic - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_soft_logic

    Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains. [ 2 ] It is applicable to a variety of machine learning problems, such as collective classification , entity resolution , link prediction , and ontology alignment .

  4. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...

  5. Monte Carlo method - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_method

    For example, a comparison of a spreadsheet cost construction model run using traditional "what if" scenarios, and then running the comparison again with Monte Carlo simulation and triangular probability distributions shows that the Monte Carlo analysis has a narrower range than the "what if" analysis.

  6. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. [1]

  7. Probabilistic context-free grammar - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_context-free...

    PCFG design impacts the secondary structure prediction accuracy. Any useful structure prediction probabilistic model based on PCFG has to maintain simplicity without much compromise to prediction accuracy. Too complex a model of excellent performance on a single sequence may not scale. [1] A grammar based model should be able to:

  8. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  9. Estimation of distribution algorithm - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_distribution...

    Estimation of distribution algorithms (EDAs), sometimes called probabilistic model-building genetic algorithms (PMBGAs), [1] are stochastic optimization methods that guide the search for the optimum by building and sampling explicit probabilistic models of promising candidate solutions. Optimization is viewed as a series of incremental updates ...