Search results
Results From The WOW.Com Content Network
The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance. It is named after the Polish mathematician Hermann Minkowski .
In mathematics, the signature (v, p, r) [clarification needed] of a metric tensor g (or equivalently, a real quadratic form thought of as a real symmetric bilinear form on a finite-dimensional vector space) is the number (counted with multiplicity) of positive, negative and zero eigenvalues of the real symmetric matrix g ab of the metric tensor with respect to a basis.
The Minkowski metric η is the metric tensor of Minkowski space. It is a pseudo-Euclidean metric, or more generally, a constant pseudo-Riemannian metric in Cartesian coordinates. As such, it is a nondegenerate symmetric bilinear form, a type (0, 2) tensor.
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime , being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
The Poincaré group consists of all coordinate transformations of Minkowski space that do not change the spacetime interval between events.For example, if everything were postponed by two hours, including the two events and the path you took to go from one to the other, then the time interval between the events recorded by a stopwatch that you carried with you would be the same.
where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix. This defining property is more fundamental than the numerical values used in the specific representation of the gamma matrices.
The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets.
Here d denotes the exterior derivative – a natural coordinate- and metric-independent differential operator acting on forms, and the (dual) Hodge star operator is a linear transformation from the space of 2-forms to the space of (4 − 2)-forms defined by the metric in Minkowski space (in four dimensions even by any metric conformal to this ...