Search results
Results From The WOW.Com Content Network
The Minkowski distance or Minkowski metric is a metric in a normed vector space which can be considered as a generalization of both the Euclidean distance and the Manhattan distance. It is named after the Polish mathematician Hermann Minkowski .
Hermann Minkowski (1864–1909) found that the theory of special relativity could be best understood as a four-dimensional space, since known as the Minkowski spacetime.. In physics, Minkowski space (or Minkowski spacetime) (/ m ɪ ŋ ˈ k ɔː f s k i,-ˈ k ɒ f-/ [1]) is the main mathematical description of spacetime in the absence of gravitation.
A Riemannian metric is a metric with a positive definite signature (v, 0). A Lorentzian metric is a metric with signature ( p , 1) , or (1, p ) . There is another notion of signature of a nondegenerate metric tensor given by a single number s defined as ( v − p ) , where v and p are as above, which is equivalent to the above definition when ...
The Minkowski content (named after Hermann Minkowski), or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets.
In general relativity, the metric tensor (in this context often abbreviated to simply the metric) is the fundamental object of study. The metric captures all the geometric and causal structure of spacetime , being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.
where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix. This defining property is more fundamental than the numerical values used in the specific representation of the gamma matrices.
Poincaré symmetry is the full symmetry of special relativity. It includes: translations (displacements) in time and space, forming the abelian Lie group of spacetime translations (P); rotations in space, forming the non-abelian Lie group of three-dimensional rotations (J); boosts, transformations connecting two uniformly moving bodies (K).
The coordinate-independent definition of the square of the line element ds in an n-dimensional Riemannian or Pseudo Riemannian manifold (in physics usually a Lorentzian manifold) is the "square of the length" of an infinitesimal displacement [2] (in pseudo Riemannian manifolds possibly negative) whose square root should be used for computing curve length: = = (,) where g is the metric tensor ...