Search results
Results From The WOW.Com Content Network
Hubble's law can be easily depicted in a "Hubble diagram" in which the velocity (assumed approximately proportional to the redshift) of an object is plotted with respect to its distance from the observer. [30] A straight line of positive slope on this diagram is the visual depiction of Hubble's law.
The Hubble parameter can change over time if other parts of the equation are time dependent (in particular the mass density, the vacuum energy, or the spatial curvature). Evaluating the Hubble parameter at the present time yields Hubble's constant which is the proportionality constant of Hubble's law .
Tired light was an idea that came about due to the observation made by Edwin Hubble that distant galaxies have redshifts proportional to their distance.Redshift is a shift in the spectrum of the emitted electromagnetic radiation from an object toward lower energies and frequencies, associated with the phenomenon of the Doppler effect.
The observational result of Hubble's law, the proportional relationship between distance and the speed with which a galaxy is moving away from us, usually referred to as redshift, is a product of the cosmic distance ladder. Edwin Hubble observed that fainter galaxies are more redshifted. Finding the value of the Hubble constant was the result ...
The law is named for the astronomers Edwin Hubble and John Henry Reynolds. It was first formulated by Reynolds in 1913 [ 2 ] from his observations of galaxies (then still known as nebulae). It was later re-derived by Hubble in 1930 [ 3 ] specifically in observations of elliptical galaxies.
where is the Hubble constant, is the proper distance, is the object's recessional velocity, and is the object's peculiar velocity. The recessional velocity of a galaxy can be calculated from the redshift observed in its emitted spectrum. One application of Hubble's law is to estimate distances to galaxies based on measurements of their ...
Our best measurement, as of 2013, for the Hubble parameter is h = 0.6780 ± 0.0077 from the Planck mission. In early 2011 it was 0.704 +0.013 −0.014 from WMAP 7-year data. [1] See Hubble's law#Determining the Hubble constant for the most recent value of H 0.
Using Hubble's law, the redshift can be used to estimate the distance of an object from Earth. By combining redshift with angular position data, a redshift survey maps the 3D distribution of matter within a field of the sky. These observations are used to measure detailed statistical properties of the large-scale structure of the universe.