Search results
Results From The WOW.Com Content Network
Kinematic diagram of Cartesian (coordinate) robot A plotter is a type of Cartesian coordinate robot.. A Cartesian coordinate robot (also called linear robot) is an industrial robot whose three principal axes of control are linear (i.e. they move in a straight line rather than rotate) and are at right angles to each other. [1]
Live Geometry is a free CodePlex project that lets you create interactive ruler and compass constructions and experiment with them. It is written in Silverlight 4 and C# 4.0 (Visual Studio 2010). The core engine is a flexible and extensible framework that allows easy addition of new figure types and features.
The radius and the azimuth are together called the polar coordinates, as they correspond to a two-dimensional polar coordinate system in the plane through the point, parallel to the reference plane. The third coordinate may be called the height or altitude (if the reference plane is considered horizontal), longitudinal position , [ 1 ] or axial ...
A polar diagram could refer to: Polar area diagram, a type of pie chart; Radiation pattern, in antenna theory; A diagram based on polar coordinates; Spherical coordinate system, the three-dimensional form of a polar response curve; In sailing, a Polar diagram is a graph that shows a sailing boats potential wind speed over a range of wind and ...
Open source robotics means that information about the hardware is easily discerned, so that others can easily rebuild it. In turn, this requires design to use only easily available standard subcomponents and tools, and for the build process to be documented in detail including a bill of materials and detailed ('Ikea style') step-by-step building and testing instructions.
Delta robot of the FlexPicker series by ABB. Sketchy, a portrait-drawing delta robot [1] A delta robot is a type of parallel robot [2] that consists of three arms connected to universal joints at the base. The key design feature is the use of parallelograms in the arms, which maintains the orientation of the end effector. [3]
Forward vs. inverse kinematics. In computer animation and robotics, inverse kinematics is the mathematical process of calculating the variable joint parameters needed to place the end of a kinematic chain, such as a robot manipulator or animation character's skeleton, in a given position and orientation relative to the start of the chain.
In this configuration, the controlled endpoint or end-effector is the point D, where the objective is to control its x and y coordinates in the plane in which the linkage resides. The angles theta 1 and theta 2 can be calculated as a function of the x,y coordinates of point D using trigonometric functions .