Search results
Results From The WOW.Com Content Network
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
The first of these quantities is used in atomic physics, the second in chemistry, but both refer to the same basic property of the element. To convert from "value of ionization energy" to the corresponding "value of molar ionization energy", the conversion is: 1 eV = 96.48534 kJ/mol 1 kJ/mol = 0.0103642688 eV [12]
For example, heats of fusion and vaporization are usually of the order of 10 kJ·mol −1, bond energies are of the order of 100 kJ·mol −1, and ionization energies of the order of 1000 kJ·mol −1. [5] For this reason, it is common within the field of chemistry to quantify the enthalpy of reaction in units of kJ·mol −1. [6]
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
For example, Paraffin has very large molecules and thus a high heat capacity per mole, but as a substance it does not have remarkable heat capacity in terms of volume, mass, or atom-mol (which is just 1.41 R per mole of atoms, or less than half of most solids, in terms of heat capacity per atom).
1 kJ/mol, converted to energy per molecule [9] 2.1×10 −21 J Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV) [10] 2.856×10 −21 J By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information 3–7×10 −21 J
In chemistry, a mole map is a graphical representation of an algorithm that compares molar mass, number of particles per mole, and factors from balanced equations or other formulae. [1] They are often used in undergraduate -level chemistry courses as a tool to teach the basics of stoichiometry and unit conversion .
, , and are the usual agents of a chemical equation with coefficients and is a positive or negative numerical value, which generally has units of kJ/mol. Another equation may include the symbol E {\displaystyle E} to denote energy; E {\displaystyle E} 's position determines whether the reaction is considered endothermic (energy-absorbing) or ...