Search results
Results From The WOW.Com Content Network
In 1888, Nikola Tesla received a patent on a two-phase induction motor with a short-circuited copper rotor winding and a two-phase stator winding. Developments of this design became commercially important. In 1889, Mikhail Dolivo-Dobrovolsky developed a wound-rotor induction motor, and shortly afterwards a cage-type rotor winding. By the end of ...
The speed and torque characteristics of a wound-rotor motor can be adjusted by changing the external resistance, unlike a squirrel cage motor which has a fixed characteristic. This is useful for speed control of the motor. [1] A wound-rotor motor can be used in several forms of adjustable-speed drive. Common applications include hoists and ...
Most common AC motors use the squirrel-cage rotor, which will be found in virtually all domestic and light industrial alternating current motors. The squirrel-cage refers to the rotating exercise cage for pet animals. The motor takes its name from the shape of its rotor "windings"- a ring at either end of the rotor, with bars connecting the ...
This creates torque that pulls the rotor into alignment with the nearest pole of the stator field. At synchronous speed the rotor is thus "locked" to the rotating stator field. This cannot start the motor, so the rotor poles usually have squirrel-cage windings embedded in them, to provide torque below synchronous speed. The machine thus starts ...
An induction motor therefore needs no electrical connections to the rotor. [a] An induction motor's rotor can be either wound type or squirrel-cage type. Three-phase squirrel-cage induction motors are widely used as industrial drives because they are self-starting, reliable, and economical.
A squirrel-cage rotor connected to the output shaft rotates within the stator at slightly less than the rotating field from the stator. Within the squirrel-cage rotor is a freely rotating permanent magnet rotor, which is locked in with rotating field from the stator. The effect of the inner rotor is to reenforce the field from the stator. [1]
Induction motors may be divided into Squirrel Cage Induction Motors (SCIM) and Wound Rotor Induction Motors (WRIM). SCIMs have a heavy winding made up of solid bars, usually aluminum or copper, electrically connected by rings at the ends of the rotor. The bars and rings as a whole are much like an animal's rotating exercise cage.
Squirrel-cage asynchronous: The most common type of shaded-pole motor in fractional horsepower use has a squirrel-cage rotor that consists of a laminated steel cylinder with conductive copper or aluminum bars embedded lengthwise in its surface, connected at the ends. Synchronous permamagnetized uses a magnetized rotor, e.g. a permanent magnet ...