When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  3. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.

  4. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  5. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    In his original work, Dirac took the phases of the different electromagnetic modes (Fourier components of the field) and the mode energies as dynamic variables to quantize (i.e., he reinterpreted them as operators and postulated commutation relations between them). At present it is more common to quantize the Fourier components of the vector ...

  6. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...

  7. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    Chebyshev polynomials can be defined in this form when studying trigonometric polynomials. [ 4 ] That cos nx is an n th- degree polynomial in cos x can be seen by observing that cos nx is the real part of one side of de Moivre's formula : cos ⁡ n θ + i sin ⁡ n θ = ( cos ⁡ θ + i sin ⁡ θ ) n . {\displaystyle \cos n\theta +i\sin n ...

  8. Matsubara frequency - Wikipedia

    en.wikipedia.org/wiki/Matsubara_frequency

    To produce simple poles on boson frequencies =, either of the following two types of Matsubara weighting functions can be chosen () = = = (+ ()),() = = (),depending on which half plane the convergence is to be controlled in. () controls the convergence in the left half plane (Re z < 0), while () controls the convergence in the right half plane (Re z > 0).

  9. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the ...