When.com Web Search

  1. Ad

    related to: strain rate physics formula chart for neet

Search results

  1. Results From The WOW.Com Content Network
  2. Strain rate - Wikipedia

    en.wikipedia.org/wiki/Strain_rate

    In physics the strain rate is generally defined as the derivative of the strain with respect to time. Its precise definition depends on how strain is measured. The strain is the ratio of two lengths, so it is a dimensionless quantity (a number that does not depend on the choice of measurement units). Thus, strain rate has dimension of inverse ...

  3. Strain-rate tensor - Wikipedia

    en.wikipedia.org/wiki/Strain-rate_tensor

    A two-dimensional flow that, at the highlighted point, has only a strain rate component, with no mean velocity or rotational component. In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the strain (i.e., the relative deformation) of a material in the neighborhood of a certain point, at a certain moment of time.

  4. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. [1][2][3][4] Stresses are proportional to the rate of change of the fluid's velocity vector. A fluid is Newtonian only if the tensors that describe ...

  5. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  6. Strain (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Strain_(mechanics)

    The (infinitesimal) strain tensor (symbol ) is defined in the International System of Quantities (ISQ), more specifically in ISO 80000-4 (Mechanics), as a "tensor quantity representing the deformation of matter caused by stress. Strain tensor is symmetric and has three linear strain and three shear strain (Cartesian) components." [6]

  7. Three-point flexural test - Wikipedia

    en.wikipedia.org/wiki/Three-point_flexural_test

    The three-point bending flexural test provides values for the modulus of elasticity in bending , flexural stress , flexural strain and the flexural stress–strain response of the material. This test is performed on a universal testing machine (tensile testing machine or tensile tester) with a three-point or four-point bend fixture.

  8. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo ...

  9. Constitutive equation - Wikipedia

    en.wikipedia.org/wiki/Constitutive_equation

    The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.