Search results
Results From The WOW.Com Content Network
The scalar triple product (also called the mixed product, box product, or triple scalar product) is defined as the dot product of one of the vectors with the cross product of the other two. Geometric interpretation
In mathematics, the dot product or scalar product [note 1] is an algebraic operation that takes two equal-length sequences of numbers (usually coordinate vectors), and returns a single number. In Euclidean geometry, the dot product of the Cartesian coordinates of two vectors is widely used.
To elucidate the connection with the triple product rule, consider the point p 1 at time t and its corresponding point (with the same height) p̄ 1 at t+Δt. Define p 2 as the point at time t whose x-coordinate matches that of p̄ 1, and define p̄ 2 to be the corresponding point of p 2 as shown in the figure on the right.
The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.
The scalar triple product (also called the box product or mixed triple product) is not really a new operator, but a way of applying the other two multiplication operators to three vectors. The scalar triple product is sometimes denoted by (a b c) and defined as:
Among the applications of the product rule is a proof that = when n is a positive integer (this rule is true even if n is not positive or is not an integer, but the proof of that must rely on other methods). The proof is by mathematical induction on the exponent n.
denotes the scalar triple product of the three vectors and denotes the scalar product. Care must be taken here to avoid negative or incorrect solid angles. One source of potential errors is that the scalar triple product can be negative if a, b, c have the wrong winding. Computing the absolute value is a sufficient solution since no other ...
A pseudoscalar also results from any scalar product between a pseudovector and an ordinary vector. The prototypical example of a pseudoscalar is the scalar triple product, which can be written as the scalar product between one of the vectors in the triple product and the cross product between the two other vectors, where the latter is a ...