Search results
Results From The WOW.Com Content Network
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
Calculate common scalar quantity (scalar triple product), take the dot product of the first observational unit vector with the cross product of the second and third ...
The Jacobi triple product identity is the Macdonald identity for the affine root system of type A 1, and is the Weyl denominator formula for the corresponding affine Kac–Moody algebra. Properties [ edit ]
In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.
Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...
The scalar triple product of three vectors is defined as = = (). Its value is the determinant of the matrix whose columns are the Cartesian coordinates of the three vectors. It is the signed volume of the parallelepiped defined by the three vectors, and is isomorphic to the three-dimensional special case of the exterior product of three vectors.
denotes the scalar triple product of the three vectors and denotes the scalar product. Care must be taken here to avoid negative or incorrect solid angles. One source of potential errors is that the scalar triple product can be negative if a, b, c have the wrong winding. Computing the absolute value is a sufficient solution since no other ...
If c = (c 1, c 2, c 3) is a third vector, then the triple scalar product equals =. From this expression, it can be seen that the triple scalar product is antisymmetric when exchanging any pair of arguments. For example,