Search results
Results From The WOW.Com Content Network
where S n − 1 (r) is an (n − 1)-sphere of radius r (being the surface of an n-ball of radius r) and dA is the area element (equivalently, the (n − 1)-dimensional volume element). The surface area of the sphere satisfies a proportionality equation similar to the one for the volume of a ball: If A n − 1 ( r ) is the surface area of an ( n ...
In mathematics, an n-sphere or hypersphere is an -dimensional generalization of the -dimensional circle and -dimensional sphere to any non-negative integer . The circle is considered 1-dimensional, and the sphere 2-dimensional, because the surfaces themselves are 1- and 2-dimensional respectively, not because they ...
Despite this difficulty, K. Böröczky gives a universal upper bound for the density of sphere packings of hyperbolic n-space where n ≥ 2. [29] In three dimensions the Böröczky bound is approximately 85.327613%, and is realized by the horosphere packing of the order-6 tetrahedral honeycomb with Schläfli symbol {3,3,6}. [ 30 ]
An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...
The n-dimensional unit sphere — called the n-sphere for brevity, and denoted as S n — generalizes the familiar circle (S 1) and the ordinary sphere (S 2). The n-sphere may be defined geometrically as the set of points in a Euclidean space of dimension n + 1 located at a unit distance from the origin.
Each point of an n-dimensional differentiable manifold has a tangent space. This is an n-dimensional Euclidean space consisting of the tangent vectors of the curves through the point. Two important classes of differentiable manifolds are smooth and analytic manifolds. For smooth manifolds the transition maps are smooth, that is, infinitely ...
The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry: a homogeneous space G/H where G = SO(n + 1, 1) acting on the (n + 2)-dimensional Lorentzian space R n+1,1 and H is the isotropy group of a fixed null ray in the light cone.