Search results
Results From The WOW.Com Content Network
A 5-1 takes its name from using 1 setter and having 5 attackers on the court. The secondary setter is replaced by an opposite hitter who is always opposite the setter on the court. This formation allows the setter to be able to dump the ball for half the rotations and have 3 front row attackers to set the ball to on the other three rotations.
Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.
A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point. It also means that the composition of two ...
The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Rotation of an object in two dimensions around a point O. Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point.
This multiple is indicated by a subscript. So, 6 3 is a rotation of 60° combined with a translation of one half of the lattice vector, implying that there is also 3-fold rotational symmetry about this axis. The possibilities are 2 1, 3 1, 4 1, 4 2, 6 1, 6 2, and 6 3, and the enantiomorphous 3 2, 4 3, 6 4, and 6 5. [8]
A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = ( ), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.