When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carnot's theorem (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem...

    Since a Carnot heat engine is a reversible heat engine, and all reversible heat engines operate with the same efficiency between the same reservoirs, we have the first part of Carnot's theorem: No irreversible heat engine is more efficient than a Carnot heat engine operating between the same two thermal reservoirs.

  3. Thermal efficiency - Wikipedia

    en.wikipedia.org/wiki/Thermal_efficiency

    This limiting value is called the Carnot cycle efficiency because it is the efficiency of an unattainable, ideal, reversible engine cycle called the Carnot cycle. No device converting heat into mechanical energy, regardless of its construction, can exceed this efficiency.

  4. Exergy efficiency - Wikipedia

    en.wikipedia.org/wiki/Exergy_efficiency

    Note that a Carnot engine is the most efficient heat engine possible, but not the most efficient device for creating work. Fuel cells, for instance, can theoretically reach much higher efficiencies than a Carnot engine; their energy source is not thermal energy and so their exergy efficiency does not compare them to a Carnot engine. [1] [2]

  5. Carnot cycle - Wikipedia

    en.wikipedia.org/wiki/Carnot_cycle

    A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through ...

  6. Carnot heat engine - Wikipedia

    en.wikipedia.org/wiki/Carnot_heat_engine

    Carnot engine diagram (modern) - where an amount of heat Q H flows from a high temperature T H furnace through the fluid of the "working body" (working substance) and the remaining heat Q C flows into the cold sink T C, thus forcing the working substance to do mechanical work W on the surroundings, via cycles of contractions and expansions.

  7. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    C a H b O c is the substance that is entering a system that one wants to find the maximum theoretical work of. By using the following equations, one can calculate the chemical exergy of the substance in a given system. Below, Equation 9 uses the Gibbs function of the applicable element or compound to calculate the chemical exergy.

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  9. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    In modern terms, Carnot's principle may be stated more precisely: The efficiency of a quasi-static or reversible Carnot cycle depends only on the temperatures of the two heat reservoirs, and is the same, whatever the working substance. A Carnot engine operated in this way is the most efficient possible heat engine using those two temperatures.