Search results
Results From The WOW.Com Content Network
However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...
Such systems are also describable by conventional Hamiltonian dynamics; but their description in the framework of Nambu mechanics is substantially more elegant and intuitive, as all invariants enjoy the same geometrical status as the Hamiltonian: the trajectory in phase space is the intersection of the N − 1 hypersurfaces specified by these ...
We have shown that every symplectic manifold is a Poisson manifold, that is a manifold with a "curly-bracket" operator on smooth functions such that the smooth functions form a Poisson algebra. However, not every Poisson manifold arises in this way, because Poisson manifolds allow for degeneracy which cannot arise in the symplectic case.
To further illuminate the c j, consider how one gets the equations of motion from the naive Hamiltonian in the standard procedure. One expands the variation of the Hamiltonian out in two ways and sets them equal (using a somewhat abbreviated notation with suppressed indices and sums):
Symplectic geometry has its origins in the Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. [1] The term "symplectic", introduced by Hermann Weyl, [2] is a calque of "complex"; previously, the "symplectic group" had been called the "line complex ...
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...
For the cotangent bundle of a manifold M, the Floer homology depends on the choice of Hamiltonian due to its noncompactness. For Hamiltonians that are quadratic at infinity, the Floer homology is the singular homology of the free loop space of M (proofs of various versions of this statement are due to Viterbo, Salamon–Weber, Abbondandolo ...