When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal expansion - Wikipedia

    en.wikipedia.org/wiki/Thermal_expansion

    A number of materials contract on heating within certain temperature ranges; this is usually called negative thermal expansion, rather than "thermal contraction".For example, the coefficient of thermal expansion of water drops to zero as it is cooled to 3.983 °C (39.169 °F) and then becomes negative below this temperature; this means that water has a maximum density at this temperature, and ...

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state. To deveop the pressure-dependent thermal expansion equation of state, in an compression process at room temperature from (V 0, T 0, P 0) to (V 1, T 0,P 1), a general form of volume is expressed as

  4. Thermal stress - Wikipedia

    en.wikipedia.org/wiki/Thermal_stress

    Temperature gradients, thermal expansion or contraction and thermal shocks are things that can lead to thermal stress. This type of stress is highly dependent on the thermal expansion coefficient which varies from material to material. In general, the greater the temperature change, the higher the level of stress that can occur.

  5. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    The laws of thermodynamics imply the following relations between these two heat capacities (Gaskell 2003:23): = = Here is the thermal expansion coefficient: = is the isothermal compressibility (the inverse of the bulk modulus):

  6. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    is pressure, temperature, volume, entropy, coefficient of thermal expansion, compressibility, heat capacity at constant volume, heat capacity at constant pressure. Maxwell's relations are a set of equations in thermodynamics which are derivable from the symmetry of second derivatives and from the definitions of the thermodynamic potentials .

  7. Compressibility - Wikipedia

    en.wikipedia.org/wiki/Compressibility

    where γ is the heat capacity ratio, α is the volumetric coefficient of thermal expansion, ρ = N/V is the particle density, and = (/) is the thermal pressure coefficient. In an extensive thermodynamic system, the application of statistical mechanics shows that the isothermal compressibility is also related to the relative size of fluctuations ...

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  9. Rayleigh number - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_number

    β is the thermal expansion coefficient (equals to 1/T, for ideal gases, where T is absolute temperature). is the kinematic viscosity; α is the thermal diffusivity; T s is the surface temperature; T ∞ is the quiescent temperature (fluid temperature far from the surface of the object) Gr x is the Grashof number for characteristic length x