When.com Web Search

  1. Ads

    related to: example of reflexive property in geometry proofs

Search results

  1. Results From The WOW.Com Content Network
  2. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

  3. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  4. Reflexive space - Wikipedia

    en.wikipedia.org/wiki/Reflexive_space

    The promised geometric property of reflexive Banach spaces is the following: if is a closed non-empty convex subset of the reflexive space , then for every there exists a such that ‖ ‖ minimizes the distance between and points of .

  5. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A reflexive, weak, [1] or non-strict partial order, [2] commonly referred to simply as a partial order, is a homogeneous relation ≤ on a set that is reflexive, antisymmetric, and transitive. That is, for all a , b , c ∈ P , {\displaystyle a,b,c\in P,} it must satisfy:

  6. Milman–Pettis theorem - Wikipedia

    en.wikipedia.org/wiki/Milman–Pettis_theorem

    In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive. The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939). S. Kakutani gave a different proof in 1939, and John R. Ringrose published a shorter proof in 1959.

  7. Strictly convex space - Wikipedia

    en.wikipedia.org/wiki/Strictly_convex_space

    If the normed space X is complete and satisfies the slightly stronger property of being uniformly convex (which implies strict convexity), then it is also reflexive by Milman–Pettis theorem. Properties

  8. Polynomially reflexive space - Wikipedia

    en.wikipedia.org/wiki/Polynomially_reflexive_space

    In mathematics, a polynomially reflexive space is a Banach space X, on which the space of all polynomials in each degree is a reflexive space. Given a multilinear functional M n of degree n (that is, M n is n -linear), we can define a polynomial p as

  9. Riesz's lemma - Wikipedia

    en.wikipedia.org/wiki/Riesz's_lemma

    In a non-reflexive Banach space, such as the Lebesgue space () of all bounded sequences, Riesz’s lemma does not hold for =. [ 5 ] However, every finite dimensional normed space is a reflexive Banach space, so Riesz’s lemma does holds for α = 1 {\displaystyle \alpha =1} when the normed space is finite-dimensional, as will now be shown.