Search results
Results From The WOW.Com Content Network
An associative entity is a term used in relational and entity–relationship theory. A relational database requires the implementation of a base relation (or base table) to resolve many-to-many relationships. A base relation representing this kind of entity is called, informally, an associative table. An associative entity (using Chen notation)
For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.
Rather, they show entity sets (all entities of the same entity type) and relationship sets (all relationships of the same relationship type). For example, a particular song is an entity, the collection of all songs in a database is an entity set, the eaten relationship between a child and his lunch is a single relationship, and the set of all ...
For example, behaviors increase in strength and/or frequency when they have been followed by reward. This occurs because of an association between the behavior and a mental representation of the reward (such as food). Conversely, receiving a negative consequence lowers the frequency of the behavior due to the negative association. [7]
Other examples of semantic networks are Gellish models. Gellish English with its Gellish English dictionary, is a formal language that is defined as a network of relations between concepts and names of concepts. Gellish English is a formal subset of natural English, just as Gellish Dutch is a formal subset of Dutch, whereas multiple languages ...
For example, we can regard a booking as either an entity that associates a person with a flight, or as an entity that designates a person and designates a flight. Hence a designative entity must contain at least one designation whereas an associative entity must contain at least two designations.
An example where this does not work is the logical biconditional ↔. It is associative; thus, A ↔ (B ↔ C) is equivalent to (A ↔ B) ↔ C, but A ↔ B ↔ C most commonly means (A ↔ B) and (B ↔ C), which is not equivalent.
The great variety and (relative) complexity of formulas involving set subtraction (compared to those without it) is in part due to the fact that unlike ,, and , set subtraction is neither associative nor commutative and it also is not left distributive over ,, , or even over itself.