When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    The term "azimuthal quantum number" was introduced by Arnold Sommerfeld in 1915 [1]: II:132 as part of an ad hoc description of the energy structure of atomic spectra. . Only later with the quantum model of the atom was it understood that this number, ℓ, arises from quantization of orbital angular moment

  3. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of angular nodes present in an orbital. For example, for p orbitals, ℓ = 1 and thus the amount of angular nodes in a p orbital is 1.

  4. Total angular momentum quantum number - Wikipedia

    en.wikipedia.org/wiki/Total_angular_momentum...

    The associated quantum number is the main total angular momentum quantum number j. It can take the following range of values, jumping only in integer steps: [ 1 ] | ℓ − s | ≤ j ≤ ℓ + s {\displaystyle \vert \ell -s\vert \leq j\leq \ell +s} where ℓ is the azimuthal quantum number (parameterizing the orbital angular momentum) and s is ...

  5. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.

  6. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    Other magnetic quantum numbers are similarly defined, such as m j for the z-axis component the total electronic angular momentum j, [1] and m I for the nuclear spin I. [2] Magnetic quantum numbers are capitalized to indicate totals for a system of particles, such as M L or m L for the total z-axis orbital angular momentum of all the electrons ...

  7. Spin quantum number - Wikipedia

    en.wikipedia.org/wiki/Spin_quantum_number

    Here L is the total orbital angular momentum quantum number. [18] For atoms with a well-defined S, the multiplicity of a state is defined as 2 S + 1. This is equal to the number of different possible values of the total (orbital plus spin) angular momentum J for a given (L, S) combination, provided that S ≤ L (the typical case).

  8. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    The azimuthal quantum number ℓ describes the orbital angular momentum of each electron and is a non-negative integer. Within a shell where n is some integer n 0 , ℓ ranges across all (integer) values satisfying the relation 0 ≤ ℓ ≤ n 0 − 1 {\displaystyle 0\leq \ell \leq n_{0}-1} .

  9. Term symbol - Wikipedia

    en.wikipedia.org/wiki/Term_symbol

    In atomic physics, a term symbol is an abbreviated description of the total spin and orbital angular momentum quantum numbers of the electrons in a multi-electron atom.So while the word symbol suggests otherwise, it represents an actual value of a physical quantity.