Search results
Results From The WOW.Com Content Network
MIPS was a fabless semiconductor company, that is, they did not have the capability to fabricate integrated circuits. The chip set was initially fabricated for MIPS by Sierra Semiconductor and Toshiba. In December 1987, MIPS licensed Integrated Device Technology, LSI Logic, and Performance Semiconductor to also fabricate and market the R2000 ...
Name License Source model Target uses Status Platforms Apache Mynewt: Apache 2.0: open source: embedded: active: ARM Cortex-M, MIPS32, Microchip PIC32, RISC-V: BeRTOS: Modified GNU GPL: open source
This is a list of central processing units based on the ARM family of instruction sets designed by ARM Ltd. and third parties, sorted by version of the ARM instruction set, release and name. In 2005, ARM provided a summary of the numerous vendors who implement ARM cores in their design. [ 1 ]
Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz. It operated at 20, 25 and 33.33 MHz. The MIPS 1 instruction set is small compared to those of the contemporary 80x86 and 680x0 architectures, encoding only more commonly used operations ...
It had larger 16 KB primary caches, largely bug-free 64-bit operation, and support for a larger L2 cache. MIPS, now a division of Silicon Graphics (SGI) named MTI, designed the low-cost R4200, the basis for the even cheaper R4300i. A derivative of this microprocessor, the NEC VR4300, was used in the Nintendo 64 game console. [1]
The first version of the MIPS architecture was designed by MIPS Computer Systems for its R2000 microprocessor, the first MIPS implementation. Both MIPS and the R2000 were introduced together in 1985. [11] [failed verification] When MIPS II was introduced, MIPS was renamed MIPS I to distinguish it from the new version. [3]: 32
The Mongoose-V 32-bit microprocessor for spacecraft onboard computer applications is a radiation-hardened and expanded 10–15 MHz version of the MIPS R3000 CPU.Mongoose-V was developed by Synova of Melbourne, Florida, USA, with support from the NASA Goddard Space Flight Center.
The design was eventually used as the basis for most MIPS-based Windows NT systems. In part because Microsoft intended NT to be portable between various microprocessor architectures, the MIPS RISC architecture was chosen for one of the first development platforms for the NT project in the late 1980s/early 1990s.