Search results
Results From The WOW.Com Content Network
More generally, one can define a decomposable aggregation function f as one that can be expressed as the composition of a final function g and a self-decomposable aggregation function h, =, = (()). For example, AVERAGE = SUM / COUNT and RANGE = MAX − MIN .
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
The counting measure is a special case of a more general construction. With the notation as above, any function : [,) defines a measure on (,) via ():= (), where the possibly uncountable sum of real numbers is defined to be the supremum of the sums over all finite subsets, that is, := , | | < {}.
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
Graphical examination of count data may be aided by the use of data transformations chosen to have the property of stabilising the sample variance. In particular, the square root transformation might be used when data can be approximated by a Poisson distribution (although other transformation have modestly improved properties), while an inverse sine transformation is available when a binomial ...
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]
In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. [1] [2] It is denoted by π(x) (unrelated to the number π). A symmetric variant seen sometimes is π 0 (x), which is equal to π(x) − 1 ⁄ 2 if x is exactly a prime number, and equal to π(x) otherwise.
Older finger counting methods used the four fingers and the three bones in each finger to count to twelve. [3] Other hand-gesture systems are also in use, for example the Chinese system by which one can count to 10 using only gestures of one hand. With finger binary it is possible to keep a finger count up to 1023 = 2 10 − 1.