Search results
Results From The WOW.Com Content Network
The detection of magnetic monopoles is an open problem in experimental physics. In some theoretical models, magnetic monopoles are unlikely to be observed, because they are too massive to be created in particle accelerators, and also too rare in the Universe to enter a particle detector with much probability.
James Clerk Maxwell FRS FRSE (13 June 1831 – 5 November 1879) was a Scottish physicist and mathematician [1] who was responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon.
In his work, he also coined the term "magnetic field" in this sense in 1845, which he later used frequently. [13] He provided a clear definition in 1850, stating [13] I will now endeavour to consider what the influence is which paramagnetic and diamagnetic bodies, viewed as conductors, exert upon the lines of force in a magnetic field.
Examples of the dynamic fields of electromagnetic radiation (in order of increasing frequency): radio waves, microwaves, light (infrared, visible light and ultraviolet), x-rays and gamma rays. In the field of particle physics this electromagnetic radiation is the manifestation of the electromagnetic interaction between charged particles.
Heinrich Rudolf Hertz (/ h ɜːr t s /, HURTS; German: [ˈhaɪnʁɪç hɛʁts]; [1] [2] 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism.
The electric and magnetic fields in such a wave are in-phase with each other, reaching minima and maxima together. Electric and magnetic fields obey the properties of superposition. Thus, a field due to any particular particle or time-varying electric or magnetic field contributes to the fields present in the same space due to other causes.
In Sept 1845 he wrote in his notebook, "I have at last succeeded in illuminating a magnetic curve or line of force and in magnetising a ray of light". [66] Later on in his life, in 1862, Faraday used a spectroscope to search for a different alteration of light, the change of spectral lines by an applied magnetic field.
With µ representing vortex density, it follows that the product of µ with vorticity H leads to the magnetic field denoted as B. The electric current equation can be viewed as a convective current of electric charge that involves linear motion. By analogy, the magnetic equation is an inductive current involving spin.